Application of Cognitive Hypothesis Testing: Using PSW Analysis

Adam Scheller, Ph.D.
Pearson Clinical Assessment

To “Process” through this “Process” let these questions be our guide.

(Otherwise known as an agenda)
• What is learning (or the dysfunction of learning)?
 • As described in law?
 • How complicated can it be?
 • Isn’t it just a one to one correspondence?
 • Examples of the complex
• What is an example of PSW?
• How can I apply results from the WISC-V and WIAT-III and/or KTEA-3 to complete PSW?

Eligibility and Need For Direct Specialized Instruction

Determining the Existence of a Specific Learning Disability
IDEA 2004

• ‟the criteria adopted by the State: Must not require the use of a severe discrepancy between intellectual ability and achievement for determining whether a child has a specific learning disability, as defined in 34 CFR 300.8(c)(10):
 • Must permit the use of a process based on the child's response to scientific, research-based intervention; and
 • May permit the use of other alternative research-based procedures for determining whether a child has a specific learning disability, as defined in 34 CFR 300.8(c)(10).

Specific Learning Disability
§ 300.309 (a) (1)

The child does not achieve adequately for the child's age or to meet State-approved grade-level standards in one or more of the following areas, when provided with learning experiences and instruction appropriate for the child's age or State-approved grade-level standards:

1. Oral Expression
2. Listening Comprehension
3. Written Expression
4. Reading Comprehension
5. Basic Reading Skills
6. Reading Fluency Skills
7. Mathematics Calculation
8. Mathematics Problem-Solving

Copyright 2016. Pearson Education and its Affiliates. All rights reserved
Specific Learning Disability

The child does not make sufficient progress to meet age or State approved grade-level standards in one or more of the areas identified in paragraph (a)(1) of this section when using a process based on the child’s response to scientific, research-based intervention; or

§ 300.309 (a) (2) (i)

Degree/Amount of Intervention

Specific Learning Disability

the child exhibits a pattern of strengths and weaknesses in performance, achievement, or both, relative to age, State-approved grade level standards or intellectual development . . . ”

(§300.309 (a) (2) (ii)).
CHC Structure

Figure 2.3: Narrow and Broad Factors in Critical Areas: Carroll Theory

Learning

Gc Gf Gv Glr Gs
Learning is the process of acquiring information.

What are the cognitive factors that enable students to show what they know and can do?

- How do they collect, sort, store, and retrieve information?
- How do they receive, perceive, process, and remember information?

Other factors?
- How do they take in information?
- How do they "put out" information?
Learning Disability NOT because of Input or Output? (Sec. 300.309)

• (3) The group determines that its findings under paragraphs (a)(1) and (2) of this section are not primarily the result of--
 • (i) A visual, hearing, or motor disability;
 • (ii) Mental retardation;
 • (iii) Emotional disturbance;
 • (iv) Cultural factors;
 • (v) Environmental or economic disadvantage; or
 • (vi) Limited English proficiency.

Sensory/Motor Functions and Learning

To respond effectively to the demands of the typical classroom, children must be able to encode information, and show what they know.

• Is the child able to see the information? Is visual acuity within normal limits?
• Is the child able to hear the information? Is hearing acuity within normal limits?
• Is the child able to respond in writing? Are fine motor abilities within normal limits?
• Is the child able to respond orally? Are language production abilities within normal limits?

<table>
<thead>
<tr>
<th>Written Expression</th>
<th>Input</th>
<th>Process</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoken directions</td>
<td></td>
<td>Acquired knowledge and achievement; writing ability, English language, grammatical knowledge, and verbal reasoning memory</td>
<td></td>
</tr>
<tr>
<td>Pictures</td>
<td></td>
<td></td>
<td>Written response</td>
</tr>
<tr>
<td>Words and sentences on a page</td>
<td></td>
<td></td>
<td>Open-ended</td>
</tr>
<tr>
<td>Spoken stimuli</td>
<td></td>
<td></td>
<td>Constrained</td>
</tr>
<tr>
<td>Time used for entry</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phonological Processing</th>
<th>Input</th>
<th>Process</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read oral directions</td>
<td></td>
<td>Acquired knowledge and achievement; phonological, auditory memory and discrimination</td>
<td></td>
</tr>
<tr>
<td>Spoken stimuli</td>
<td></td>
<td></td>
<td>Printing response</td>
</tr>
<tr>
<td>Sample and tracing</td>
<td></td>
<td></td>
<td>Spoken formulation/ oral</td>
</tr>
<tr>
<td>Pictures</td>
<td></td>
<td></td>
<td>Open-ended</td>
</tr>
<tr>
<td>Time used for entry</td>
<td></td>
<td></td>
<td>Multiple choice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nonsensory Word Processing</th>
<th>Input</th>
<th>Process</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read oral directions</td>
<td></td>
<td>Acquired knowledge and achievement; phonological, auditory memory and discrimination</td>
<td></td>
</tr>
<tr>
<td>Teaching items</td>
<td></td>
<td></td>
<td>Printing response</td>
</tr>
<tr>
<td>Nonsense on a page</td>
<td></td>
<td></td>
<td>Spoken formulation/ oral</td>
</tr>
<tr>
<td>Time used for entry</td>
<td></td>
<td></td>
<td>Open-ended</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attention and Learning

To receive, perceive, process, and remember information, children must
• selectively attend to certain stimuli while ignoring competing, irrelevant stimuli.
• sustain attentional focus for a prolonged period.
• shift attentional resources from one activity to another.
• respond to more than one task simultaneously – divided attention.

Visual-Spatial Processes and Learning

• Much of what is presented in school has either a visual-spatial or language basis.
• Visual-perceptual skills play a major role in the development of a child’s handwriting skills, and fluency in math and reading.
• For example, a student may be able to name individual letters in a word (visual analysis, b-e-d). She may be unable to integrate the letters to say the word (visual synthesis, bed).

Language and Learning

Language is the basis for much of the learning that occurs in schools.
• Children must understand words and sentences to perceive and process information – receptive.
• They must use words to show they can retrieve information from memory – expressive.
• Early development of reading depends critically on whether the receptive phonological component of the aural system and the expressive phonological component of the oral system are developing in an age-appropriate manner (Berninger, V., 2007).
Speed of Processing and Learning

• Efficient cognitive processing frees-up cognitive resources
 for more complex or higher-level tasks.
• A weakness in the speed of processing routine information
 may make the task of comprehending novel and/or non-
 routine information more time-consuming and difficult.
• For example,
 • If a child names words effortlessly, s/he can focus cognitive
 energy on higher-order comprehension.
 • If a child computes fluently, s/he can focus on application.

Working Memory Theory

WISC-IV (2003)

• Compared 4 factors of WISC-IV to 11 domains of
 functioning explained by Cattell, Horn, and Carroll
 (1993).
• Found the following domains are measured by the
 WISC-IV:
 • Gf (Fluid Reasoning, Novel Problem Solving)
 • Gc (Crystallized Knowledge)
 • Gs (Processing Speed, Automatic Thinking)
 • Gv (Visual Spatial Abilities)
 • Gsm (Short-term Memory, Conscious Awareness)
 • Gq (Store of Acquired Quantitative Knowledge)

- A cross battery confirmatory factor analytic (CFA) approach was applied to major intelligence assessments for classification of abilities (WISC-III and WJ-III)
- Confirmed G_f, G_c, broad domains and narrow abilities.
- The WISC-III and WJ-III load heavily on five stratum II domains (G_c, G_q, G_s, G_{sm}, G_v).
- WISC-IV represents the addition of G_i, G_a, and G_r domains.

Keith, Goldenring Fine, Taub, Reynolds, & Kranzler (2006)

- Extended WISC-IV (2003)
- Confirmatory Factor Analysis of WISC-IV
- Identified the following factors:
 - G_c
 - G_v
 - G_f
 - G_{sm}
 - G_s
 - Not G_q

If we think of WISC-V factors like this...

<table>
<thead>
<tr>
<th>Index Score</th>
<th>CHC Broad Ability (Narrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCI</td>
<td>G_c</td>
</tr>
<tr>
<td>VSI</td>
<td>G_v</td>
</tr>
<tr>
<td>FRI</td>
<td>G_f</td>
</tr>
<tr>
<td>WMI</td>
<td>G_{sm} (MW, MS)</td>
</tr>
<tr>
<td>PSI</td>
<td>G_s</td>
</tr>
<tr>
<td>QRI</td>
<td>G_f (RQ), G_q</td>
</tr>
<tr>
<td>AWMI</td>
<td>G_{sm} (MW, MS)</td>
</tr>
<tr>
<td>NSI</td>
<td>G_r (NA)</td>
</tr>
<tr>
<td>STI</td>
<td>G_r (MA)</td>
</tr>
<tr>
<td>SRI</td>
<td>G_r</td>
</tr>
</tbody>
</table>
We are able to analyze cognition like this...

<table>
<thead>
<tr>
<th>Reading</th>
<th>Broad Ability</th>
<th>Narrow Ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter & Word Recognition</td>
<td>Gw</td>
<td>Reading Decoding (RD)</td>
</tr>
<tr>
<td>Nonword Word Decoding</td>
<td>Gw</td>
<td>Reading Decoding (RD)</td>
</tr>
<tr>
<td>Decoding Fluency</td>
<td>Gw</td>
<td>Reading Speed (RS)</td>
</tr>
<tr>
<td>Reading Fluency</td>
<td>Gw</td>
<td>Reading Comprehension (RC)</td>
</tr>
<tr>
<td>Silent Reading Fluency</td>
<td>Gw</td>
<td>Reading Speed (RS)</td>
</tr>
</tbody>
</table>

KTEA-3 and CHC

<table>
<thead>
<tr>
<th>Writing</th>
<th>Broad Ability</th>
<th>Narrow Ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written Expression</td>
<td>Gw</td>
<td>Reading Ability (RA)</td>
</tr>
<tr>
<td>Spelling</td>
<td>Gw</td>
<td>Spelling Ability (SB)</td>
</tr>
<tr>
<td>Writing Fluency</td>
<td>Gw/Gc</td>
<td>Reading Speed (RS)</td>
</tr>
<tr>
<td>Listening Comprehension</td>
<td>Gw</td>
<td>Comprehension Ability (CA)</td>
</tr>
<tr>
<td>Oral Expression</td>
<td>Gw</td>
<td>Communication Ability (CA)</td>
</tr>
<tr>
<td>Auditory Theory</td>
<td>Gw</td>
<td>Auditory Theory (AT)</td>
</tr>
<tr>
<td>Language Processing</td>
<td>Gw</td>
<td>Verbal Coding (VC)</td>
</tr>
<tr>
<td>Digit Span Reading</td>
<td>Gw</td>
<td>Visual-Spatial Coding (VSC)</td>
</tr>
<tr>
<td>Color Naming Facility</td>
<td>Gw</td>
<td>Letter-Nonletter Coding (LNC)</td>
</tr>
</tbody>
</table>
Finding Consistency between Cognitive and Academic tests

Possible Areas of Cognitive Processing Weaknesses Suggested by Qualitative Observations on KTEA-3

<table>
<thead>
<tr>
<th>Language or Achievement Area</th>
<th>Symbolic Processing</th>
<th>Visual Processing & Clarity</th>
<th>Executive/Attentional Functioning</th>
<th>Language Processing</th>
<th>Working Memory</th>
<th>Fluid Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listening Comprehension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading Comprehension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading Fluency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing Expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Calculation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Problem Solving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Real Word and Non-Word Reading

- **Word Reading**
 - Indexes: VCI and AWMI
 - Subtest DS VC (IN, CO)
 - Complementary Measures
 - Delayed Symbol Translation
 - Naming Speed Literacy

- **Pseudoword Decoding**
 - Indexes: VCI, WMI, NSI
 - Subtest DS VC (IN, CO)
 - Complementary Measures
 - Delayed Symbol Translation
 - Naming Speed Literacy
Reading Comprehension and Fluency

- Reading Comprehension
 - Indexes: VCI, FRI, and AWMI
 - Subtest SI, VC (CO), MR (AR)
 - Complementary Measures
 - Delayed Symbol Translation

- Oral Reading Fluency
 - Indexes: VCI, NSI, AWMI
 - Subtest VC, CD, DS (LNS), SSI
 - Complementary Measures
 - Naming Speed Literacy
 - Delayed Symbol Translation

Reading Indexes

- Basic Reading
 - Indexes: VCI, AWMI, WMI, NSI
 - Subtest VC (IN), DS, AR
 - Complementary Measures
 - Naming Speed Literacy

- Total Reading
 - Indexes: VCI, AWMI, SRI
 - Subtest DS, SI, VC (CO, IN), AR
 - Complementary Measures
 - Naming Speed Literacy
 - Delayed Symbol Translation

Math Calculation and Problem Solving

- Math Problem Solving
 - Indexes: QRI, AWMI, VSI
 - Subtest DS, FW, CD (AR), BD, VC (AR)
 - Complementary Measures
 - Delayed Symbol Translation

- Numerical Operations
 - Indexes: QRI, PSI, AWMI, VCI
 - Subtest SI, CD, DS (AR), FW (AR)
 - Complementary Measures
 - Naming Speed Quantity (CD)
Math Fluency and Total

• Math Fluency
 • Indexes: QRI, PSI, AWMI, NSI
 • Subtests: CD, DS (AR), FW (AR)
 • Complimentary
 • Naming Speed Literacy
 • Naming Speed Quantity

• Total Math
 • Indexes: VCI, FRI, and AWMI
 • Subtests: DS, CD, FW, SI, AR
 • Complimentary
 • Delayed Symbol Translation

Spelling and Writing

• Essay Composition
 • Indexes: PSI, VCI, QRI
 • Subtest CD, SI (CO), FW

• Spelling
 • Indexes: AWMI, VCI, and FRI
 • Complementary Measures
 • Delayed Symbol Translation
 • Naming Speed Literacy

Total Writing

• Total Writing
 • Indexes: VCI, AWMI, PSI, QRI
 • subtest DS (LN), SI, CD, VC (IN), AR
 • Complementary Measures
 • None
Do we have a blood test for SLD?

Approaches to Pattern of Strengths and Weaknesses Analysis
(Hale, Flanagan, & Naglieri, 2008)

- Most prominent research-based:
 1. Concordance-discordance method (C-DM; Hale & Fiorello, 2004)
 2. Discrepancy/consistency method (Naglieri & Das, 1997),
 3. Cross battery assessment approach (Flanagan, Ortiz, & Alfonso, 2013)
PSW Approaches

• Commonalities:
 • Rule out exclusionary factors as part of the definition of a learning disability
 • Identify a cognitive processing weakness that is related to the achievement weakness
 • Identify one or more areas of strength that are unrelated to the achievement weakness
 • However, they also do differ in several key areas, including the criteria for defining strength and weakness.

What is PSW

• Requires the identification of a processing weakness,
 • Differentiates between SLD and underachievement (for other reasons).
 • SLD requires individualized instruction responsive to processing strengths and weaknesses.

• Is important given current thinking that only using RTI is not sufficient for diagnosing SLD (Flanagan, Florello, & Ortiz, 2010; Hale et al., 2010; Hale, Kaufman, Naglieri, & Kavale, 2009).

Methodological and Statistical Requirements for PSW

• The scores comparisons must be significantly different (discrepant) meet criteria for SLD identification:
 • processing strength vs. achievement weakness
 • processing strength vs. processing weakness
 • Is there a consistency between the achievement weakness and the processing weakness
 • Rationale for SLD
Methodological and Statistical Requirements for PSW

• Score comparisons are evaluated using the simple-difference method rather than the predicted-score (regression) method.
 - Not an implicit causal relationship,
 - As with AAD

• If comparisons are not statistically significant, the child does not demonstrate a pattern consistent with an SLD
 - However, USE CLINICAL JUDGMENT AND MULTIPLE DATA POINTS!

PSW and the WISC-V

• The PSW model in the WISC-V
 - Most closely resembles the C-DM model.
 - Legally acceptable and clinically sound approach (Hale & Fiorello, 2004; Hale et al., 2010).

• Use it within research-supported cognitive and neuropsychological approaches to assessment
 - Cognitive hypothesis-testing model (e.g., Hale & Fiorello, 2004),
 - Cross-battery assessment approach (e.g., Flanagan et al., 2013),
 - Cattell-Horn-Carroll (CHC) theory (e.g., Flanagan, Alfonso, Mascida, & Sotelo-Dyregni, 2012),
 - Luria approaches (e.g., Luria, 1973)
 - PASS theory as operationalized by the Das-Naglieri Cognitive Assessment System (CAS; Naglieri & Das, 1997; Naglieri, 1999) and the NEPSY-II (as discussed in Kemp & Korkman, 2010).

PSW and the WISC-V

• Naming Speed Literacy and Symbol Translation subtests give standard scores (as opposed to scaled scores).
• Directly comparable to other frequently used score in PSW
 - Such as WISC–V index scores, subtest and composite standard scores on achievement measures linked to the WISC–V.
Conduct PSW Analysis with WISC-V and WIAT-III and/or KTEA-3:

Step 1

1. Select the achievement weakness
 a. Subtest or composite score that corresponds to primary achievement weakness
 a. Consider below average (i.e., standard score less than 85)
 b. Consider selecting a subtest or composite score that corresponds to IDEA-specified areas of achievement for identifying an SLD
 b. Examine subtest variability within a composite score before selecting the composite as the achievement weakness.
 a. Use subtests

Step 2

2. Select the WISC-V standard score that represents the processing weakness.
 a. Generally associated with the achievement weakness
 b. Examine subtest variability within the WISC-V standard scores before selecting a processing weakness.
 a. Preferable (not always necessary) to use a different standard score
Step 3

3. Select the WISC-V standard score that represents the processing strength.
 a. Processing strength not typically related to the achievement weakness
 b. Examine subtest variability within the WISC-V standard scores before selecting the processing strength (see 2b).
 c. Avoid using WMI, PSI, AWMI, any of Naming Speed process or subtest scores, or SRI as the strength in PSW.

Comparing the PSW and AAD Analyses - Differences

1. WISC-V primary index scores, some of the ancillary and complementary index scores, and some of the subtest and process standard scores are used in the PSW analysis, but measures of processing strengths and weaknesses, the FSIQ, NVI, and GAI scores are not used.
2. Two score comparisons are required to meet the criteria of the PSW model, rather than the single comparison used in the AAD analysis.
3. Statistical evidence of a processing weakness is an essential requirement only in the PSW analysis. A processing weakness (i.e., a disorder in one or more of the basic psychological processes) is specified as a defining characteristic of a learning disability, according to the federal definition (IDEA Sec. 300.8[c][10]). Proper use of the AAD model may also include a supplementary evaluation of processing weaknesses; however, this analysis is not essential to the model.
The PSW model is intended to help practitioners generate hypotheses regarding clinical diagnoses. This analysis should always be used within a comprehensive evaluation that incorporates multiple sources of information.

Pattern of Strengths and Weaknesses Analysis

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Relative Strength Score</th>
<th>Relative Weakness Score</th>
<th>Diff.</th>
<th>Critical Value</th>
<th>Sig. Diff. Y/N</th>
<th>Supports SID Hypothesis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Processing Strength / Achievement Weakness</td>
<td>114 (VCI)</td>
<td>79 (MQ)</td>
<td>35</td>
<td>8.82</td>
<td>Y</td>
<td>Yes</td>
</tr>
<tr>
<td>B Processing Strength / Processing Weakness</td>
<td>114 (VCI)</td>
<td>80 (WM)</td>
<td>34</td>
<td>10.18</td>
<td>Y</td>
<td>Yes</td>
</tr>
</tbody>
</table>

PSW with WISC-V and WIAT-III

PSW Analysis
Adam Scheller, Ph.D.